Recombinant cardiac ATP-sensitive K+ channel subunits confer resistance to chemical hypoxia-reoxygenation injury.
نویسندگان
چکیده
BACKGROUND Opening of cardiac ATP-sensitive K+ (KATP) channels has emerged as a promising but still controversial cardioprotective mechanism. Defining KATP channel function at the level of recombinant channel proteins is a necessary step toward further evaluation of the cardioprotective significance of this ion conductance. METHODS AND RESULTS KATP channel deficient COS-7 cells were found to be vulnerable to chemical hypoxia-reoxygenation injury that induced significant cytosolic Ca2+ loading (from 97+/-3 to 236+/-11 nmol/L). In these cells, the potassium channel opener pinacidil (10 micromol/L) did not prevent Ca2+ loading (from 96+/-3 nmol/L before to 233+/-12 nmol/L after reoxygenation) or evoked membrane current. Cotransfection with Kir6.2/SUR2A genes, which encode cardiac KATP channel subunits, resulted in a cellular phenotype that, in the presence of pinacidil (10 micromol/L), expressed K+ current and gained resistance to hypoxia-reoxygenation (Ca2+ concentration from 99+/-7 to 127+/-11 nmol/L; P>0.05). Both properties were abolished by the KATP channel blocker glyburide (1 micromol/L). In COS-7 cells transfected with individual channel subunits Kir6.2 or SUR2A, which alone do not form functional cardiac KATP channels, pinacidil did not protect against hypoxia-reoxygenation. CONCLUSIONS The fact that transfer of cardiac KATP channel subunits protected natively KATP channel deficient cells provides direct evidence that the cardiac KATP channel protein complex harbors intrinsic cytoprotective properties. These findings validate the concept that targeting cardiac KATP channels should be considered a valuable approach to protect the myocardium against injury.
منابع مشابه
Recombinant cardiac ATP-sensitive potassium channels and cardioprotection.
The ATP-dependent potassium channels (KATP channels) were originally identified in isolated membrane patches prepared from guinea pig ventricular myocytes by Noma in 1983. Since their discovery in cardiac cells, KATP channels have also been discovered in many other tissues, such as smooth muscle, skeletal muscle, pancreas, and brain, in which they have been shown to couple cellular metabolism t...
متن کاملBioenergetic and volume regulatory effects of mitoKATP channel modulators protect against hypoxia-reoxygenation-induced mitochondrial dysfunction.
The mitochondrial ATP-sensitive K(+) (mitoKATP) channel plays a significant role in mitochondrial physiology and protects against ischemic reperfusion injury in mammals. Although fish frequently face oxygen fluctuations in their environment, the role of the mitoKATP channel in regulating the responses to oxygen stress is rarely investigated in this class of animals. To elucidate whether and how...
متن کاملChronic mild hypoxia protects heart-derived H9c2 cells against acute hypoxia/reoxygenation by regulating expression of the SUR2A subunit of the ATP-sensitive K+ channel.
Chronic exposure to lower oxygen tension may increase cellular resistance to different types of acute metabolic stress. Here, we show that 24-h-long exposure to slightly decreased oxygen tension (partial pressure of oxygen (PO2) of 100 mm Hg instead of normal 144 mm Hg) confers resistance against acute hypoxia/reoxygenation-induced Ca2+ loading in heart-derived H9c2 cells. The number of ATP-sen...
متن کاملEffect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats
There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...
متن کاملRole of sulfonylurea receptor type 1 subunits of ATP-sensitive potassium channels in myocardial ischemia/reperfusion injury.
BACKGROUND Opening of cardiac ATP-sensitive potassium channels (K(ATP) channels) is a well-characterized protective mechanism against ischemia and reperfusion injury. Evidence exists for an involvement of both sarcolemmal and mitochondrial K(ATP) channels in such protection. Classically, cardiac sarcolemmal K(ATP) channels are thought to be composed of Kir6.2 (inward-rectifier potassium channel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 98 15 شماره
صفحات -
تاریخ انتشار 1998